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Abstract. The dynamical properties of symmetric quantum interferometers with equal junctions of negli-
gible capacitance have been studied by means of perturbation analysis in the limit of small values of the
parameter β. In this limit, two characteristic time constants arise. These quantities may be linked to two
different dynamical processes in the system: the first is related to the time evolution of the average super-
conducting phase difference across the two junctions; the second defines the time scale for flux motion. The
response of the system to constant and time-dependent externally applied magnetic fields is considered
and a general perturbed solution for the average superconducting phase difference and the fluxon number
variable is derived to first order in β.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 85.25.Dq Super-
conducting quantum interference devices (SQUIDs)

1 Introduction

The study of the dynamical properties of two junctions
quantum interference models is useful in understanding
the electrodynamics response of d.c. SQUIDs (Supercon-
ducting QUantum Interference Devices). The latter de-
vices find application in various fields as ultra-high sen-
sitive instruments [1,2] and are possible candidates for
logic elements in quantum computing [3–5]. As for the
latter applications, a quantum mechanical description of
the SQUID system containing two overdamped Josephson
junctions has only very recently been given [5]. In gen-
eral, however, qubits are envisioned as superconducting
loops interrupted by Josephson junctions with high capac-
itance and low resistance, in order to attain non dissipative
Hamiltonian quantum descriptions of these systems [3,4].

The properties of two-junction interferometer models
have been recently studied by means of a perturbation ap-
proach applied to the complete set of dynamical equations
for the gauge-invariant superconducting phase differences
across the Josephson junctions [6,7]. Following this ap-
proach, the superconducting phase variable which deter-
mines the dynamics of the whole system is the average
phase ϕ, for which one obtains, in the limit of very small
capacitance of the junctions, the following effective time
evolution:

dϕ

dτ
+ (−1)n x sinϕ+ πβ y2 sin 2ϕ =

iB
2
, (1)
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where n is an integer, x = cosπψex, y = sinπψex, ψex
being the applied magnetic flux normalized to Φ0, the el-
ementary flux quantum, and where β = LIJ

Φ0
, L and IJ

being the inductance of a single loop branch and the max-
imum Josephson current of both junctions, respectively,
and iB = IB

IJ
, with IB the bias current. In equation (1)

τ = 2πRIJ
Φ0

t, so that τϕ = Φ0
2πRIJ

is the characteristic time
constant for the average phase ϕ, where R is the resistive
parameter of both junctions. To this dynamical equation
one adds the perturbed solution, to first order in β, of the
normalized flux variable ψ:

ψ = ψex − 2 (−1)n β y cosϕ, (2)

where one implicitly assumes that the characteristic time
for flux motion τψ in the system is much lower then τϕ,
which then remains the only relevant time constant for
the system. Nevertheless, in order to account for the inter-
play of both physical processes described by the complete
model of a two-junction quantum interferometer, namely,
flux motion, or dynamics of the flux number ψ, and time
evolution of the average phase ϕ, it is necessary to con-
sider the values of both time constants, τψ and τϕ, which
in general do not necessarily differ by orders of magnitude.

In the present work we thus develop a perturbation
analysis in which the time constants for flux motion and
for evolution of the average superconducting phase are
initially considered to be comparable, in such a way that
the interplay between the two dynamical processes can be
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Fig. 1. A schematic representation of a symmetric quantum
interferometer with two equal junctions of negligible capaci-
tance.

studied along with the transient solution of the system’s
dynamics. Only after having specified the role of these two
time constants, we analyze the system in the usual limit
(τψ � τϕ) both in the presence of a constant and of an
oscillating applied field. Therefore, in the next section we
start from the complete model for a symmetric quantum
interferometer with two equal junctions of negligible ca-
pacitance and indicate how the perturbation analysis can
be carried out to account both regular and singular parts
of the solution. In the third section the case of a constant
applied flux ψex is considered and the perturbed solution
for ψ and the effective time evolution equation for ϕ are
found to first order in the parameter β. The analysis per-
formed for constant ψex is extended to the case the ex-
ternally applied magnetic flux varies sinusoidally with re-
spect to time in the fourth section. Conclusions are drawn
in the last section.

2 Perturbation analysis

Let us consider a symmetric two junction interferometer
with equal junctions of negligible capacitance, as shown
in Figure 1. The dynamical equations for the variables
ϕ and ψ, characterizing this system, can be written in the
following form [6]:

dϕ

dτ
+ (−1)n cos (πψ) sinϕ =

iB
2

; (3a)

π
dψ

dτ
+ (−1)n sin (πψ) cosϕ+

ψ

2β
=
ψex
2β

. (3b)

Let us consider a new time variable ϑ = τ
2πβ = R

L t and
write the solutions for ϕ and ψ in the following form:
ϕ(β, τ) ≈ ϕ0,β(τ) + βϕ1,β(τ); ψ(β, τ) ≈ ψ0(ϑ) + βψ1(ϑ).
This approach allows us not only to account for the reg-
ular part of the solution, as seen in references [6,7], but
also to consider its singular part. Moreover, as we shall
see, the role of the two time variables will become evi-
dent in what follows, since one time scale is defined for
equation (3a) and one for equation (3b). Consider then
ϕ(β, τ) and ψ(β, τ) to be bounded, differentiable func-
tions, and expand the sine and cosine functions appearing
in equations (3a, 3b) to first order in β. By then substi-
tuting equations (5) and (6) in equations (3a) and (3b),
respectively, and by collecting all coefficients of identical
power of β, we can obtain a system of equations for the
functions ϕk,β(τ) and ψk(ϑ), with k = 0, 1. These func-
tions are determined according to the following sequential

scheme. As a first step, we use equation (3b) to determine
ψ0(ϑ). We adopt the solution found and substitute it in
equation (3a) to determine ϕ0,β(τ). The latter solution,
on its turn, is substituted in equation (3b) to find ψ1(ϑ)
and, finally, this solution is used in equation (3a) to find
ϕ1,β(τ). Note, however, that for defining first order so-
lutions, knowledge of zero-th order solutions is required.
Furthermore, we assume that the initial conditions are the
following:

ϕ(β, 0) = ϕ0,β(0) + βϕ1,β(0); ψ(β, 0) = ψ0(0) + βψ1(0).
(4)

As for initial conditions, from equation (3b) we may no-
tice that ψ0(τ) = ψex for β = 0, in which case we cannot
even define the time variable ϑ. This condition, however, is
inherited by the function ψ0(ϑ), since the following equal-
ities are satisfied:

ψ0

(
τ

β

)
β=0

= ψ0 (ϑ)ϑ→∞ = ψex. (5)

Furthermore, we may also notice that ψk (ϑ)ϑ=0 =

ψk

(
τ
β

)
τ=0

= ψk (0), for k = 0, 1.
By the general procedure described above we get the

following differential equations for the superconducting
phase variables:

dϕ0,β

dτ
+ (−1)n cos (πψ0 (ϑ)) sinϕ0,β (τ) =

iB
2
, (6a)

dϕ1,β

dτ
+ (−1)n ϕ1,β (τ) cos (πψ0 (ϑ)) cosϕ0,β (τ) =

(−1)n πψ1 (ϑ) sin (πψ0 (ϑ)) sinϕ0,β (τ) ; (6b)

and the following for the flux number variables:

dψ0

dϑ
+ ψ0 (ϑ) = ψex, (7a)

dψ1

dϑ
+ ψ1 (ϑ) = 2 (−1)n−1 sin (πψ0 (ϑ)) cosϕ0,β (2πβϑ) .

(7b)

In equations (6a, 6b) and (7a, 7b) we may notice the ap-
pearance of two different time scales the first, τψ = L

R ,
linked to flux motion in and out the superconducting ring,
the second, τϕ = Φ0

2πRIJ
, pertaining to the dynamics of the

superconducting phase difference value ϕ. We notice that
τψ
τϕ

= 2πβ, so that, for negligible values of this ratio, the
system behaves effectively as if an adiabatic time evolu-
tion of the superconducting phase difference variable ϕ
could be studied under the assumption that asymptotic
solutions of ψ could be used. In this case, therefore, we
may first let the system evolve in its flux states, so that
a stationary magnetic state is reached, and then solve for
the superconducting phase difference time evolution of the
system. This is exactly what is done, under the assump-
tions of negligible value of the ratio τψ

τϕ
, in references [6,7].

However, when one would like to acquire the regular so-
lution for the system dynamics, even when considering
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the approximate solution for the variable ϕ and ψ, one
needs to follow the more general perturbation analysis de-
scribed in the present work, where the ratio might not a
priori considered as negligible. Finally, considering that
this ratio is proportional to the perturbation parameter,
one might wish to generalize the above analysis to higher
order in the parameter β, in order to have a wider range
of validity of the analysis itself. Therefore, this analysis
could be extended to higher order approximations of the
perturbation solutions, and this will be done in a future
work.

As remarked before, by limiting our analysis to the
case in which the parameter β is considered small, in what
follows we shall only be concerned with a single time scale,
namely τϕ, by assuming that the transient of the flux vari-
able rapidly vanishes ( τψτϕ � 1). In this way, the dynamical
equations for the flux variable (Eqs. (7a, 7b)) give the fol-
lowing steady-state solution for ψ0 and ψ1:

ψ0 = ψex, (8a)

ψ1 = 2 (−1)n−1 sin (πψex) cosϕ0 − 2π
dψex
dτ

, (8b)

where the term 2πdψex
dτ has been inserted in equation (8b),

in order to correctly take account of first order contribu-
tions in β, when considering only the time scale τϕ and
the subscript β in ϕ0,β(τ) has been elided, as it will be
done for ϕ1,β(τ) from this point on, since these functions
will not depend on β in this limit.

3 Constant applied flux

In the present section we consider ψex as constant. By the
general procedure schematized above we get the follow-
ing differential equations for the superconducting phase
variables:

dϕ0

dτ
+ (−1)n cos (πψex) sinϕ0 (τ) =

iB
2
, (9a)

dϕ1

dτ
+ (−1)n ϕ1 (τ) cos (πψex) cosϕ0 (τ) =

(−1)n πψ1 (τ) sin (πψex) sinϕ0 (τ) ; (9b)

and the following for the flux number variables:

ψ0 = ψex, (10a)

ψ1 (τ) = 2 (−1)n−1 sin (πψex) cosϕ0 (τ) . (10b)

According to the scheme described in the previous section,
by having already set ψ0 = ψex in equation (9a) we may
solve for ϕ0 (τ).

We now briefly discuss how to obtain this solution. In
the case ∣∣∣∣ iB

2(−1)n cos (πψex)

∣∣∣∣ =
1
|a| > 1,

which characterizes the running state of the junctions, we
have

ϕ0 (τ) = 2 tan−1
[
a+

√
1 − a2 tan

(
γτ + tan−1 ξ0

)]
,

(11)
where

γ =
1
2

√
i2B
4

− cos2 (πψex)

and

ξ0 =
tan

(
ϕ0(0)

2

)
− a

√
1 − a2

.

On the other hand, in the case
∣∣∣∣ iB
2(−1)n cos (πψex)

∣∣∣∣ =
1
|a| < 1,

which characterizes the superconducting state of the junc-
tions, we have

ϕ0 (τ) = 2 tan−1
[
a+

√
a2 − 1 tanh

(
γ̃τ + tanh−1 (χ0)

)]
,

(12)
where

γ̃ =
1
2

√
cos2 (πψex) − i2B

4

and

χ0 =
tan

(
ϕ0(0)

2

)
− a

√
a2 − 1

.

Finally, in the case |a| = 1, we have

ϕ0 (τ) = sgn (a)
[
2 tan−1

(
iBτ

2
+ ω

(±)
0

)
− π

2

]
, (13)

where ω(±)
0 = tan

(
sgn (a) ϕ0(0)

2 + π
4

)
.

Having found the time dependence of the variable ϕ0,
ψ1 can be found by equation (10b) by substitution. Fi-
nally, by knowledge of ψ0, ϕ0 and ψ1, ϕ1 can be found
by equation (9b), which is a standard first order linear
differential equation. Solutions for ϕ0 are shown in Fig-
ures 2a–2c for cos (πψex) = 0.3 and iB = 1.6, iB = 0.4 and
iB = 0.6, respectively, along with the solution obtained by
numerically integrating equations (3a, 3b). In Figures 2b–
2c the first order approximation of the solution is shown as
a dotted line. Solutions for ϕ1 are shown in Figures 3a–3c
for cos (πψex) = 0.3 and iB = 1.6, iB = 0.4 and iB = 0.6,
respectively. The above analysis thus leads to a solution
in a closed form, to first order in the parameter β. No-
tice that in the case of time-dependent bias currents one
should adopt a more general procedure.

As a simple application, let us calculate, to first or-
der in the parameter β, the circulating current iS in the
circuit, normalized to IJ , given by [1]:

iS =
ψ − ψex

β
. (14)
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Fig. 2. Average phase difference by setting cos (πψex) = 0.3
and: (a) iB = 1.6; (b) iB = 0.4; (c) iB = 0.6. Dotted lines rep-
resent ϕ0 (τ ) as calculated to zero-th order in the parameter β
(taken to be 0.02), full lines represent ϕ (τ ) as calculated to first
order in the parameter β (taken to be 0.02), and dashed lines
represents the numerical solution of the complete system. In
(a) the first order approximation of the solution is not shown,
for clarity reasons.

For an arbitrary value n, which represents the number of
fluxons initially trapped in the superconducting ring, we
have

iS = ψ1 (τ) = 2 (−1)n−1 sin (πψex) cosϕ0 (τ) . (15)

Graphs of circulating currents are shown in Fig-
ures 4a, 4b, 4c for n even, iB = 2.2 and for ψex =
0.1 and 0.3, ψex = 0.5, ψex = 0.7 and 0.9, respectively.
The period T of these curves is equal to the pseudo-period
of ϕ0,β which is given by the following expression in terms
of ψex and iB:

T =
2π√(

iB
2

)2 − cos2 (πψex)
. (16)

Notice that the lowest value of the period is obtained for
ψex = 0.5 and that the curves for ψex = 0.1 and 0.9 and
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Fig. 3. First order correction to ϕ0 (τ ) as calculated
by the procedure described in the text by setting β =
0.02 cos (πψex) = 0.3 and: (a) iB = 1.6; (b) iB = 0.4; (c)
iB = 0.6.

for ψex = 0.3 and 0.7, although having the same period, as
it can be argued from equation (16), are not equal. Finally
notice also that, by equation (15), for odd values of n the
current just reverses its sign.

4 Time-dependent applied flux

The results in the previous section have been obtained for
the magnetic response of the system in the presence of a
constant applied flux. In the present section we shall ana-
lyze the electrodynamic response of the two junction quan-
tum interferometer in the presence of a time-dependent
external flux. For this purpose, we shall take a sinusoidal
forcing term, in such a way that ψex (t) = A+B cos (ωt),
where A is the normalized d.c. component of the applied
flux and B is the normalized amplitude of the a.c. signal.
Now, since t = Φ0

2πRIJ
τ , we can write

ψex (τ) = A+B cos (ω̃τ) , (17)

where ω̃ = Φ0
2πRIJ

ω. We shall assume that the normalized
amplitude B of the oscillating signal is much less than one
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(B � 1). The perturbation analysis is then carried out in
a similar way as in the previous section.

We start by setting, by equations (8a) and (8b)
ψ0 (τ) = ψex (τ) = A + B cos (ω̃τ ) and ψ1 =
2 (−1)n−1 sin (πψex (τ)) cosϕ0 − 2π dψexdτ and solve the
equations for the phase differences

dϕ0

dτ
+ (−1)n cos (πψex (τ)) sinϕ0 (τ) =

iB
2
, (18a)

dϕ1

dτ
+ (−1)n ϕ1 (τ) cos (πψex (τ)) cosϕ0 (τ) =

−π sin2 (πψex (τ)) sin (2ϕ0 (τ)) . (18b)

By noticing, however, that cos (πψex (τ)) =
cos (πA+ πB cos (ω̃τ )) ≈ cos (πA)−πB sin (πA) cos (ω̃τ ),
equation (18a) can be written in the following form:

dϕ0

dτ
+ (−1)n (a− b cos (ω̃τ )) sinϕ0 (τ) =

iB
2
, (19)

where a = cos (πA) and b = πB sin (πA). In equation (19)
we find a perturbed solution in terms of the parameter b,
so that, by setting ϕ0 (τ) = η0 (τ) + bη1 (τ), we can write:

dη0
dτ

+ (−1)n a sin η0 (τ) =
iB
2
, (20a)

dη1
dτ

+ (−1)n a cos η0 (τ) η1 (τ) = (−1)n sin η0 (τ) cos (ω̃τ ) .

(20b)

Notice then that the solutions to the above equations can
be found by exactly the same procedure described in the
previous section. Once the solution for ϕ0 (τ) is found, by
substituting in equation (18b), the solution for ϕ1 (τ) can
be determined by solving a first order linear differential
equation with time-dependent coefficients. Assuming thus
ϕ0 (τ) = η0 (τ)+ bη1 (τ) to be a known expression, we can
then write:

iS = 2 (−1)n−1 sin (πψex (τ)) cos (η0 (τ)
+ bη1 (τ)) + 2πω̃B sin ω̃τ. (21)

As in the previous section, the above expression, equal to
ψ1 (τ), represents the circulating current iS in the circuit.
In Figures 5a–5c we represent the time dependence of the
current iS for the respective values of the normalized fre-
quency ω̃ = 0.03, 0.06, 0.09, and for A = 0, β = 0.01 and
iB = 2.5. In these graphs we notice that the oscillating
patterns, which we have already detected in the constant
applied field case, are modulated by the externally applied
oscillating signal.

Another important quantity to be measured in these
systems is the critical current ic, which is the maximum
value of the current bias iB which can be injected in the
two junction interferometer without giving rise to dissipa-
tion. By considering the stationary case of equation (21a)
we write:

iB = 2 (−1)n cos (πψex (τ)) sinϕ0 (τ) . (22)
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Fig. 4. Circulating current iS as a function of the normalized
time for null values of the initially trapped flux and for iB = 2.2
and: (a) ψex = 0.1 (full line), ψex = 0.3 (dashed line); (b)
ψex = 0.5; (c) ψex = 0.7 (dashed line), ψex = 0.9 (full line).

Therefore, we have

ic = 2 |cos (πA+ πB cos (ω̃τ))| . (23)

Noticing that the time-averaged value 〈ic〉 of the critical
current do not depend on the normalized frequency, it can
be calculated in terms of solely A and B, the results being
shown in Figures 6a and 6b for null values of the initially
trapped flux. In particular, in Figure 6a 〈ic〉 is shown as
a function of the applied magnetic field amplitude B, for
A = 0.1 and A = 0.4, while in Figure 6b, 〈ic〉 vs. A curves
are shown for B = 0.1 and B = 0.2. In the curves in
Figure 6a we notice Fraunhofer-like oscillations, while or-
dinary cosinusoidal oscillations are present in Figure 6b.

5 Conclusions

We studied the dynamical properties of a symmetric quan-
tum interferometer containing two identical junctions with
negligible capacitance by means of a perturbation ap-
proach in the parameter β, whose value gives the strength
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Fig. 5. Normalized time dependence of the circulating current
iS in the presence of an oscillating field with A = 0, B = 0.1
and normalized frequencies equal to: (a) ω̃ = 0.03; (b) ω̃ =
0.06; (c) ω̃ = 0.09. No initially trapped flux in the SQUID is
assumed and β = 0.01, iB = 2.5.

of the electromagnetic coupling between the two junc-
tion in the system. The analysis is rather similar to what
done in other works in the literature [6,7]. However, in
the present work we present a rather general procedure
to obtain the solution to the problem to first order in
the parameter β. Considering at first transient solutions,
we have noticed that the function ψ (β, ϑ) governs fluxon
dynamics, where ϑ is the ordinary time t, normalized to
the characteristic circuital time constant τΨ = L

R . By this
more general approach it becomes thus evident that the
characteristic time constant τϕ = Φ0

2πRIJ
of the dynamics

of the average superconducting phase difference ϕ is dif-
ferent from the fluxon dynamics characteristic time τΨ , so
that the asymptotic solution for the system, proposed in
the analyses carried out in references [6,7], takes on a more
precise meaning in this context. Indeed, when the parame-
ter β is sufficiently small to allow, for finite values of τ , an
asymptotic evaluation of ψ0

(
τ

2πβ

)
and ψ1

(
τ

2πβ

)
, the gen-

eral solution given in the present work coincides with the
asymptotic perturbed solution proposed in references [6,7]
in the limit of negligible junction capacitance.
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Fig. 6. (a) Time average value 〈ic〉 of the critical current ic
as a function of the amplitude B of the oscillating magnetic
flux for A = 0.1 and A = 0.2, for null values of the initially
trapped flux. The curve with stars is plotted for A = 0.1, the
curve with diamond is plotted for A = 0.2. (b) Time average
value 〈ic〉 of the critical current ic as a function of A for null
values of the initially trapped flux, and for two values of the
amplitude B of the oscillating magnetic flux. The curve with
stars is plotted for B = 0.1, the curve with diamond is plotted
for B = 0.4.

The perturbation analysis has been first carried out
for a constant applied magnetic flux. Successively, since
it could be experimentally possible to force the system
with a time-dependent magnetic field, it is noted that the
perturbed solution for the flux number ψ, obtained for a
sinusoidal magnetic flux, needs careful evaluation. In or-
der to exhibit experimentally detectable quantities, the
circulating current iS is evaluated as a function of time,
for different values of the frequency of the forcing field.
Finally, the time average 〈ic〉 of the critical current of the
device has been studied both as a function of the d.c. com-
ponent and of the amplitude of the oscillating part of the
applied flux. In these curves two characteristic behaviours
have been detected: a Fraunhofer-like pattern in 〈ic〉 vs.
B curves; independence of 〈ic〉 from ω̃.

All these results could trigger experimental studies
on this well known and widely used device, especially
considering that these systems can be adopted as ele-
mentary models for granular superconductors [10], where
the coupling between adjacent superconducting grains is
described by means of Josephson links.
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